
Using Cryptography Well
Bart Preneel

February 2007

1

Using Cryptography Well

Prof. Bart Preneel
COSIC

Bart.Preneel(at)esatDOTkuleuven.be
http://homes.esat.kuleuven.be/~preneel

© Bart Preneel. All rights reserved

Outline

• 1. Cryptology: protocols
– identification/entity authentication
– key establishment

• 2. Public Key Infrastructures
• 3. Secure Networking protocols

– Internet Security: email, web, IPSEC, SSL

• 4. Using cryptography well
• 5. New developments in cryptology

Outline

• Architecture
• Network protocols
• Security APIs
• Key establishment: protocols, generation,

storage

Symmetric vs. Asymmetric Algorithms

• hardware costs: 5K–
100K gates

• performance: 100
Mbit/s – 70 Gbit/s

• keys: 64-256 bits
• blocks: 64-128 bits
• power consumption:

20-30 μJ/bit

• hardware costs: 100K-
1M gates

• performance: 100
Kbit/s – 10 Mbit/s

• keys: 128-4096 bits
• blocks: 128-4096 bits
• power consumption:

1000-2000 μJ/bit

Architectures (1a)

• Point to point
• Local
• Small scale

• Number of keys: 1 or n2

• Manual keying

Example:
ad hoc PAN or WLAN

Architectures (2a)
• Centralized
• Small or large scale
• Manual keying

• Number of keys: n
• ! Central database: risk +

big brother
• Non-repudiation of origin?

(physical assumptions)

Example: WLAN,
e-banking, GSM

Using Cryptography Well
Bart Preneel

February 2007

2

Architectures (3a)
• Centralized
• Small or large scale
• Manual keying

• Number of keys: n +
1/session

• ! Central database: risk + big
brother

• Non-repudiation of origin?
(physical assumptions)

Example: LAN
(Kerberos)

Architectures (4a)
• Decentralized
• Large scale

• Number of keys: n + N2

• Risks?
• Trust
• Hard to manage

Example:
network of LANs,

GSM

Architectures (5a)
• Centralized
• Large scale
• Hierarchy

• Number of keys: n + N

Example: credit
card and ATM

Architectures (1b)

• Point to point
• Worldwide
• Small networks

• No CA (e.g. PGP)

Example:
P2P, international

organizations

Architectures (2b)
• Centralized
• Large or small scale

• Reduced risk
• Non-repudiation of origin

Example: B2C
e-banking

Architectures (3b)
• Centralized
• Small or large scale

• Reduced risk
• Non-repudiation of origin

Example: B2B and
e-ID

Using Cryptography Well
Bart Preneel

February 2007

3

Architectures (4b)
• Decentralized
• Large scale
• (Open)

• Key management
architecture?

• Trust

Example: B2B,
GSM interoperator

communication

Architectures (5b)
• Centralized
• Large scale
• Hierarchy

• Open

Example: credit
card EMV

When asymmetric cryptology?
• if manual secret key installation not feasible

(also in point-to-point)
• open networks (no prior customer relation or

contract)
• get rid of risk of central key store
• mutually distrusting parties

– strong non-repudiation of origin is needed
• fancy properties: e-voting

Important lesson: on-line trust relationships should
reflect real-word trust relationships

EMV Static Data Authentication (SDA)

Acquirer

POS DeviceIC Card

CERTISS
(PISS
certified
with SCA)

CERTIFIED

Issuer
SISS

Public Key

PISS

Private
Key

SCA

Public Key

PCA

Private
Key

Distributed to AcquirerDistributed to Acquirer
(Resides in Terminal)(Resides in Terminal)

PCA

IC

EPI

Static Card
data

EMV: dynamic data
authentication

Three layers:

EPI

Issuers

Cards
Issuer

Issuer
Issuer

Issuer

CA

EMV Dynamic Data Authentication

Acquirer

POS Device IC Card

CERTCERTISSISS
(P(PISSISS
certified certified
with Swith SCA)CA)

CERTIFIED

Issuer
SISS

Public Key

PISS

Private
Key

SCA

Public Key

PCA

Private
Key

Distributed to AcquirerDistributed to Acquirer
(Resides in Terminal)(Resides in Terminal)

PCA

IC

EPI

SIC
PIC

Private
Key

Public Key Static Card
data

CERTIC
(PIC
certified
with SISS)

CERTIFIED

Authenticate and Sign Transaction with SIC

Using Cryptography Well
Bart Preneel

February 2007

4

Network protocols

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Host Host

Router TLS/SSL
IPsec

S/MIME

PPTP, L2TP

Where to put security?

• Application layer:
– closer to user
– more sophisticated/granular controls
– end-to-end
– but what about firewalls?

• Lower layer:
– application independent
– hide traffic data
– but vulnerable in middle points

• Combine?

Where to put security? (2)

From: Bob@crypto.com
To: Alice@digicrime.com
Subject: Re: Can you meet me on Monday at

3pm to resolve the price issue?

This proposal is acceptable for me.
-- Bob

Security APIs
• Security module controls access to and processing

of sensitive data
– executes cryptographic commands, e.g. PIN checking,

encryption,…

Security
module

hardware or software

Host

Security API

I/O

network

Master key/data key
• Load master AES key KM (tightly controlled)
• Load data key:

AESKM(K1)|| AESKM(K2)|| AESKM(K3)
• Send plaintext P and ask for encryption

EK1(DK2(EK3(P)))

DES P DES-1 DES

1 2 3

%^C&
@&^(

Master key/data key (2)
• Load master AES key KM (tighthly controlled)
• Load corrupted data key:

AESKM(K1)|| AESKM(K1)|| AESKM(K1)
• Send plaintext P and ask for encryption

EK1(DK1(EK1(P))) = EK1(P)

DES P DES-1 DES

1 1 1

%^C&
@&^(

Using Cryptography Well
Bart Preneel

February 2007

5

Control vectors in the IBM 4758 (1)

• Potted in epoxy resin
• Protective tamper-sensing membrane, chemically

identical to potting compound
• Detectors for temperature & X-Rays
• “Tempest” shielding for RF emission
• Low pass filters on power supply rails
• Multi-stage “latching” boot sequence
= STATE OF THE ART PROTECTION!

IBM 4758

Control vectors in the IBM 4758 (2)

• Control vector: type (e.g., PIN, data, MAC)
E Km + type (k), type

• High security: triple control
– Import Km as KmA + KmB + KmC

• User C performs one correct and one
fraudulous import by entering the 2nd time
KmC + Δ with Δ = typeDATA + typePIN

• Result: Km* = Km + Δ

Control vectors in the IBM 4758 (3)
Km: master key
Km* = Km + Δ = Km + typeDATA + typePIN

or Km* + typeDATA = Km + typePIN
k = PIN encrypting key

Normally: D Km + typePIN (E Km + typePIN (k)) = k
But attack: D Km* + typeDATA (E Km + typePIN (k)) = k

The system now believes that k is a key to
decrypt data, which means that the result will be
output (PINs are never output in the clear)

Security APIs

• Complex – 150 commands
• Need to resist to insider frauds
• Hard to design – can go wrong in many ways

• See: Mike Bond, Cambridge University
http://www.cl.cam.ac.uk/users/mkb23/research.html

Key management

• Key establishment protocols
• Key generation
• Key storage
• Key separation (cf. Security APIs)

Using Cryptography Well
Bart Preneel

February 2007

6

Key establishment protocols:
subtle flaws

• Meet-in-the middle attack
– Lack of protected identifiers

• Reflection attack
• Triangle attack

Attack model:
Needham and Schroeder [1978]:

We assume that the intruder can interpose a
computer in all communication paths, and
thus can alter or copy parts of messages,
replay messages, or emit false material.
While this may seem an extreme view, it is
the only safe one when designing
authentication protocols.

Meet-in-the middle attack on Diffie-Hellman

• Eve shares a key k1 with Alice and a key k2 with
Bob

• Requires active attack

α x1

α y1

k1 =(α y1) x1 =(α x1)y1

α x2

α y2

k2 =(α y2) x2 =(α x2)y2

Entity authentication

• Alice and Bob share a secret k

NA

Ek(NA||NB)

NB

Entity authentication: reflection attack
• Eve does not know k and wants to

impersonate Bob

NA

NA

Ek(NA||NA’)

Ek(NA||NA’=NB)
NB

Needham-Schroeder (1978)

• Alice and Bob have each other’s public key
PA and PB

EPB(NA||A)

EPA(NB||NA)

EPB(NB)

Derive a
session key

k from
NA||NB

Using Cryptography Well
Bart Preneel

February 2007

7

Lowe’s attack on Needham-Schroeder (1995)

• Alice thinks she is talking to Eve
• Bob thinks he is talking to Alice

EPE(NA||A)

EPA(NB||NA)

EPE(NB)

EPB(NA||A)

EPA(NB||NA)

EPB(NB)

Eve

Lowe’s attack on Needham-Schroeder (1995)

• Eve is a legitimate user = insider attack
• Fix the problem by inserting B in message 2

EPB(NA||A)

EPA(NB||NA||B)

EPB(NB)

Lessons from Needham-Schroeder (1995)

• Prudent engineering practice (Abadi &
Needham): include names of principals in all
messages

• IKE v2 – plausible deniability: don’t include
name of correspondent in signed messages:
http://www.ietf.org/proceedings/02nov/I-
D/draft-ietf-ipsec-soi-features-01.txt

Rule #1 of protocol design

Don’t!

Why is protocol design so hard?

• Understand the security properties offered by
existing protocols

• Understand security requirements of novel
applications

• Understanding implicit assumptions about
the environment underpinning established
properties and established security
mechanisms

And who are Alice and Bob anyway?

• Users?
• Smart cards/USB tokens of the users?
• Computers?
• Programs on a computer?

If Alice and Bob are humans, they
are vulnerable to social engineering

Using Cryptography Well
Bart Preneel

February 2007

8

Random number generation

• “The generation of random numbers is too
important to be left to chance”

• John Von Neumann, 1951: "Anyone who considers
arithmetical methods of producing random digits is,
of course, in a state of sin”

• Used for
– Key generation
– Encryption and digital signatures

(randomization)
– Protocols (nonce)

Key generation: overview

Hardware
entropy source

Software
entropy source

Entropy pool

State update

Initialization Internal state

extract
Generate

key

Monitoring

random bits

keys

Key generation: hardware entropy sources

• radioactive decay
• reverse biased diode
• free running oscillators
• radio
• audio, video
• hard disk access time (air turbulence)
• manually (dice)
• lava lamps

Risk: physical attacks, failure

Key generation: software entropy sources

• system clock
• elapsed time between keystrokes or mouse

movements
• content of input/output buffers
• user input
• operating system values (system load,

network statistics)
• interrupt timings

Risk: monitoring, predictable

Key generation: monitoring

• Statistical tests (NIST FIPS 140)
• typical tests: frequency test, poker test, run’s

test
• necessary but not sufficient
• 5 lightweight tests to verify correct operation

continuously
• stronger statistical testing necessary during

design phase, after production and before
installation

State update

• Keep updating entropy pool and extracting
inputs from entropy pool to survive a state
compromise

• Combine both entropy pool and existing state
with a non-invertible function (e.g., SHA-
512, x2 mod n,…)

Using Cryptography Well
Bart Preneel

February 2007

9

Output function

• One-way function of the state since for some
applications the random numbers become
public

• A random string is not the same as a random
integer mod p

• A random string is not the same as a random
prime

What not to do
• use rand() provided by programming language or

O/S
• restore entropy pool (seed file) from a backup and

start right away
• use the list of random numbers from the RAND

Corporation
• use numbers from http://www.random.org/

– 66198 million random bits served since October 1998
• use digits from π, e, π/e,…
• use linear congruential generators

– xn+1 = a xn + b mod m

RSA moduli

• Generate a 1024-bit RSA key
Use random bit generation to pick random a integer

r in the interval [2512,2513-1]
If r is even r:=r+1
Do r:=r+2 until r is prime; output p
Do r:=r+2 until r is prime; output q

What is the problem?

What to consider/look at

• There are no widely used standardized
random number generators

• Learn from open source examples: ssh,
openpgp, linux kernel source

• /dev/random (slow)
• Yarrow/Fortuna
• ANSI X9.17 (but parameters are marginal)
• Web resource:

http://www.cs.berkeley.edu/~daw/rnd/

How to store keys

• Disk: only if encrypted under another key
– But where to store this other key?

• Human memory: passwords limited to 48-64 bits
and passphrases limited to 64-80 bits

• Removable storage: Floppy, USB token, iButton,
PCMCIA card

• Cryptographic co-processor: smart card USB token
• Cryptographic co-processor with secure reader and

keypad
• Hardware security module

How to back-up keys

• Backup is essential for decryption keys
• Security of backup is crucial
• Secret sharing: divide a secret over n users so

that any subset of t users can reconstruct it

Destroying keys securely is harder
than you think

